Large orders in strong-field QED

نویسنده

  • Thomas Heinzl
چکیده

We address the issue of large-order expansions in strong-field QED. Our approach is based on the one-loop effective action encoded in the associated photon polarisation tensor. We concentrate on the simple case of crossed fields aiming at possible applications of high-power lasers to measure vacuum birefringence. A simple next-to-leading order derivative expansion reveals that the indices of refraction increase with frequency. This signals normal dispersion in the small-frequency regime where the derivative expansion makes sense. To gain information beyond that regime we determine the factorial growth of the derivative expansion coefficients evaluating the first 80 orders by means of computer algebra. From this we can infer a nonperturbative imaginary part for the indices of refraction indicating absorption (pair production) as soon as energy and intensity become (super)critical. These results compare favourably with an analytic evaluation of the polarisation tensor asymptotics. Kramers-Kronig relations finally allow for a nonperturbative definition of the real parts as well and show that absorption goes hand in hand with anomalous dispersion for sufficiently large frequencies and fields. PACS numbers: 12.20.-m, 42.50.Xa, 42.60.-v Large orders in strong-field QED 2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analytic Form for the Effective Lagrangian of QED and its Application to Pair Production and Photon Splitting

We derive an analytic form for the Heisenberg-Euler Lagrangian in the limit where the component of the electric field parallel to the magnetic field is small. We expand these analytic functions to all orders in the field strength (FμνF ) in the limits of weak and strong fields, and use these functions to estimate the pair-production rate in arbitrarily strong electric fields and the photon-spli...

متن کامل

Kinetic theory of QED plasmas in a strong electromagnetic field I. The covariant hyperplane formalism

We present a covariant density matrix approach to kinetic theory of QED plasmas subjected to a strong external electromagnetic field. A canonical quantization of the system on space-like hyperplanes in Minkowski space and a covariant generalization of the Coulomb gauge is used. The condensate mode associated with the mean electromagnetic field is separated from the photon degrees of freedom by ...

متن کامل

Kinetic theory of QED plasma in a strong electromagnetic field I. The covariant hyperplane formalism

We develop a covariant density matrix approach to kinetic theory of QED plasmas subjected into a strong external electromagnetic field. A canonical quantization of the system on space-like hyperplanes in Minkowski space and a covariant generalization of the Coulomb gauge is used. The condensate mode associated with the mean electromagnetic field is separated from the photon degrees of freedom b...

متن کامل

Faster than Light Photons in Gravitational Fields II – Dispersion and Vacuum Polarisation

Vacuum polarisation in QED in a background gravi-tational field induces interactions which effectively violate the strong equivalence principle and affect the propagation of light. In the low frequency limit, Drummond and Hathrell have shown that this mechanism leads to superluminal photon velocities. To confront this phenomenon with causality, however, it is necessary to extend the calculation...

متن کامل

QED amplitudes: recurrence relations to all orders

We describe the origins of recurrence relations between field theory amplitudes in terms of the construction of Feynman diagrams. In application we derive recurrence relations for the amplitudes of QED which hold to all loop orders and for all combinations of external particles. These results may also be derived from the Schwinger-Dyson equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006